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INTRODUCTION:
/

" When a body, floating on the surface of an infinite,

ideal, inviscid, irrotational fluid is subjected to a periodic

vertical displacement, a wave pattern is created in the

fluid and the problem of determining this pattern from a

knowledge of the body geometry and applied forces is well

known in fluid mechanics. In problems with both partially

and fully submerged objects, quantities of physical

interest are not only the wave patterns which may be derived

from the velocity potential but also functionals of the

potential such as added mass and damping factors which

measure the distribution of energy in the fluid, e.g.

Weyhausen and Laitone [26, p. 567]. These factors are, of

course, dependent on the body geometry.and the present paper

is devoted to showing how these quantities may be optimized

over restricted classes of body geometry.

Specifically we Will study the problem of the optimal

design of a floating body, totally submerged in a fluid of

finite depth. In the terminology of optimal control, this

is a problem of optimization of geometrical elements

(see Lions [17]).

In his classic paper [13], John formulated this problem

of a partially immersed heaving body as a boundary value

problem for the velocity potential which satisfies Laplace's

equation with given Neumann data on the submerged portion

of the boundary, a linearized free surface condition on the

mean free surface, a homogeneous Neumann condition on the

.....................................

.
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bottom of the fluid container, and a radiation condition.

Under certain restrictions on the body shape, in particular

that it be convex, smooth, and have normal intersection with

the free surface, he proved the existence of a unique

solution and formulated an integral equation for the

velocity potential evaluated on the body surface. Kleinman

has shown in (15] that the geometrical conditions of John

may be somewhat relaxed: corners are allowable as are

non-normal intersections with the free surface, and convexity

is not necessary. However the essential restriction that

vertical rays from the free surface intersect the body at

most once remains. Relaxation of this restriction has been

reported by Ursell [25] for the two dimensional case. In

[15] it is also shown that the integral equation, suitably

modified possesses unique solutions i.e. methods are

provided for showing how one may eliminate the problem of

the existence of so-called irregular frequencies. We

should point out here that such irregular frequencies are

an artifact of the integral equation method; they are

particular values of the parameter appearing in the free

surface boundary condition for which the integral equation

has multiple solutions. However, the original boundary

value problem has at most one solution and so we see that

an irregular frequency does not correspond to a physical

pathology. Moreover, such irregular frequencies are

dependent on the shape of the body. As we will be looking

at a family of such bodies it will be essential to our

.. . ...
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analysis that we use an integral equation formulation that

is free of such irregular frequencies and one of our first

tasks will be to establish such a boundary integral

equation for our problem.

When the body is completely submerged, John's

uniqueness proof no longer applies, however, Maz'ja [19]

has provided a proof for a class of bodies subject again

to certain geometric restrictions. In this case the

boundary value problem may once more be reformulated as a

uniquely solvable integral equation. A virtue of the

integral equation formulation of problems for partial

differential equations in unbounded regions exterior to

a bounded obstacle lies in the apparent advantage that

numerical algorithms for bounded domains (the domains of

the integral operators) have over algorithms for unbounded

domains.

Problems involving optimization with respect to the

domain have been treated by a number of authors, among

whom we mention Cea and his co-workers [5 ], [6 ],

Chenais [7 1 and Pironneau [21], [23]. This last author

has published a book [24] on this general topic. But the

great majority of the papers in this area treat problems

in bounded domains. In this paper, we deal with a problem

whose natural setting is an unbounded domain and we will

find the boundary integral equation method particularly

convenient. With respect to optimization problems in

exterior domains, using boundary integral equations, we

A.
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refer to the recent treatment of the three dimensional

inverse acoustic scattering problem by Angell, Colton, and

Kirsch [ 1] and the subsequent numerical treatment of an

inverse two dimensional problem by Kirsch [141.

As in [1 1, our approach to the optimization problem

will depend on the reformulation of the original boundary

value problem (which here includes not only boundary

conditions given on the bounded surface of the body, but

also on the bottom and on the free surface which are of

infinite extent), as a uniquely solvable integral equation

defined on the boundary of the body. The first section of

this paper is devoted to this question. While the use of

an appropriate radiation condition and Green's theorem

will lead to an integral equation, it is important to note

that the equivalence of this integral equation formulation

and the original boundary value problem depends on a

uniqueness theorem for the boundary value problem. This is

already a non-trivial problem which is, as yet, not fully

understood. As mentioned earlier, for the case of a

totally submerged body, Maz'ja [19] has given a proof of

uniqueness for a restricted class of bodies. The recent

and interesting paper of A. Hulme [211 discusses the

result of Maz'ja and most effectively describes the

geometric meaning of the result. Since it is essential to

have a uniqueness result for the original boundary value

problem, we will confine ourselves to this class of bodies;

our results can, however, be extended immediately to any

situation in which uniqueness obtains.
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The second section of the paper is then devoted to

the formulation and proof of the existence of a solution,

optimal in the sense of being a body with minimal (or

maximal) added mass or damping, in any compact set of

admissible surfaces. We point out here that this problem

is highly non-linear: the cost function involves the

solution of the boundary value problem relative to the

unknown boundary.

Since the class of all admissible surfaces is convex

we study necessary optimality conditions in section 3.

There, we compute the Gateaux derivative of the cost

functional using, basically, the arguments introduced by

Hadamard [11). The problem of computing the derivative of

a "domain functional" appears in a number of works

including [2], [5], [6 ], and [7]. The techniques used

here allow us to deal with a much more general situation

than that, for example, of Kirsch [14] in so far as we

work in three dimensions and make no a priori analyticity

assumptions on the parametric representation of the surface.

Moreover we do not use techniques of complex variables e.g.

conformal mapping arguments or reflection principles.

As one would expect, since we are dealing with a

constrained optimization problem, the necessary conditions

take the form of a variational inequality and we conclude

section 3 with a brief discussion of a numerical procedure

for finding solutions of this inequality. It is our

intention to present concrete numerical results elsewhere.
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1. The Basic Boundary Value Problem

In this discussion we will consider the following

geometry: A Cartesian coordinate system is centered at a

point on the linearized free surface and oriented so that

the free surface coincides with the (x,z)-plane (y=O) and

the fluid extends from y=-h to y=O. The submerged body

will be a simply connected subset of R lying in a strip

R2 x[-h,-, 0 ] whose boundary r is a bounded Lyapunov

surface of index 1. We will place certain additional

restrictions on r and these will be indicated as they

become necessary. We denote the interior of the body by

D, and the points of the strip R2x[-h,0] and exterior to

the body by D+ . The condition that the surface be

Lyapunov of index 1 guarantees, among other things, that

there exists a Lipschitz continuous normal n at all points

of r. We emphasize that n is oriented so that it points

into D+ . Points will be denoted by p=(xp,ypzp) with

cylindrical coordinates p=(pp,ep,yp) and the subscripts

will be omitted if there is no danger of confusion.

x

D D
'A A

ii
[i- D+

n n0
• f iC BCE Iy=-h

Figure 1
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We concern ourselves with the following boundary value

problem:

(a) A= 0 in D

(b 7 + ko = 0 on y=0:"(b) ony
(1.1)

c) 0 on y=-h

(d) g on r

together with a radiation condition

(1.1) (e) ik 0  = o( - )

wheregcC(r) and k is the root with largest real part of
0

the transcendental equation

(1.2) kn sinh k nh = k cosh k h

Recall that n always points into D +

In [19], Maz'ja introduced a restricted class of

boundaries for which this boundary value problem has at most

one solution. We formulate that theorem here as follows:

Theorem 1.1: Let V be the vector field in R3 defined by

V v= rpy_- p[. [2+y2 P"+

Then the homogeneous boundary value problem (1) with g=0

has only the trivial solution provided

(1.3) V.n _ 0 on P

. .
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A discussion of this result and its geometric significance

may be found in A. Hulme [12]. We will refer to the class

of all such surfaces as the Maz'ja class.

Following John [13] we introduce the Green's function

for this problem which is normalized to have the form

= 1 1
(1.4) y(p,q) -- + R(p,q)2ir Jp-qi J pq

where the function R has bounded derivatives with respect

to q for points pEr (see [13; p. 961) and y satisfies

conditions 1.1b, c and e. Using this Green's function to

define single and double layer potentials, the usual jump

conditions can be established as in the potential-theoretic
case since the singular behavior of y and n is determined by

-q
the first term in (1.4). For convenience, we record these

results here:

(1.5) lim+ u(q)y(pq)d = ±u(p)+ u(p) dr~3n f q j 3n qp4. - n- r p

(1.6) lim+ u(q) y(p,q)dr = u(p)+ u(q) y(p'q) drq
7nP r q an

+

where p-+ means p approaches F from D.

Moreover, if u is a solution of the boundary value

problem (1.1) then one may use Green's Theorem to draw the

familiar relation

r ~2u(p), pe-D
(1.7) qy(pq) nq a (Y(P,q))u(q) drq p

q q0, pED-

. . .................
• .. . . . . . .....-. ... . . . . .... ,. .-... . ....-. o -- *.° •o..-.-.-
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If one then uses the boundary condition (l.ld) we have,

(1.8) y(p,q)g(q)drq u(q) [y(p,q)]drq = u(p)
f q q

or, in operator notation

(1.9) (I+K<*)u = f y(p,q)g(q)dfq

r
ay

where R* is the boundary integral operator with kernel
q

We pause to remark that, given a solution, w, of this

integral equation we may represent the-solution of the

boundary value problem, according to the relati, n (1.7) by

(1.10) u(p) = j Y(p,q)g(q)drq- j w(q) a( drq, pEDf q n- q'
r r

and, again using the jump relations one sees easily that

(1.11) ulr =w

which is a direct relationship between the solution of the

boundary integral equation and the boundary values taken on

by the solution. Such a direct relation does not obtain

when one uses a layer approach in which one assumes that

the solution u has a representation as a single layer,

u(p) = w(q)y(p,q)dFq

and then the boundary condition and jump relations are

employed to obtain an integral equation for w.

Our first task is to discuss the unique solvability

of (1.9).

- - .- ' i -- - -- - - . .. - - -
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Theorem 1.2: Let P be Lyapunov of index 1 and belong to

the Maz'ja class. Let geC(r) . Then the integral equation

(1.9) has a unique solution.

Proof: Since R* is an integral operator with a weak

singularity on the smooth surface r it is compact

(e.g. [8 1) hence the Fredholm alternative applies. Thus

the integral equation in question either has a unique

solution in L2( ) (or in fact in C(r )) or the homogeneous

adjoint equation has non-trivial solutions in which case

(1.9) has solutions if and only if the function ygdF is

* r

orthogonal to all solutions of the homogeneous adjoint

equation

(1.12) (I+)'w = 0

where K is the boundary integral operator with kernel

P
We first prove that any solution to (1.12) is orthogonal

to f ygdr for any gEL (.

r
.2

Assume that w is a solution of (1.12) and define

I+

f(p) : y (, q) w(q)dq , pED+

Certainly w, as a solution of (1.12) is continuous on r

and the jump condition (1.5) yields

- =w+Kw = 0 on F

Hence the function 4) is a solution of the exterior

homogeneous submerged floating body problem and so, by

..

• . ' . ., ..' ' . - -.' ." -I -I ...I ' ,, . . -.. .... , . - .. -. - ..- - -. - -. .. -. ' '



Theorem 1.1, -0 in 5+ . Therefore,

0 f g(q)Tp(q)dr f f y(q,p)c"(p)drpg(q)dr.1q rjpq
r r r

and because the Green's function is symmetric we obtain

SJ y(pq)g(q)drqcW(p)drp = 0

r r

which is the required orthogonality condition. Thus the

equation (1.9) always has at least one solution.

To see that (1.9) has at most one solution, we assume
0 0

that M* is a non-trivial solution of (I+R*)w*=O. Define v

in D_ by

v(p) = f (p,q) 0 *(q)d1q p D
an M *"q d E

f q

Then, again using the jump relations we have

0

v(p) = (I+K*)M*(p) = 0

and so v is a solution of the homogeneous interior Dirichlet

problem for the Laplacian. Since there are no non-trivial

solutions of this problem, v must vanish in D7 and so

3-(p)=0 for pEF
a n

Now define v in D+ by

y(pq) *(q)dP
v(p) = f 3n q pED

r q
a

Since W* is continuous on r and r is Lyapunov of index 1,

v P(p) exists and is equal to L--(p)=o by a Theorem of
3n+  an-

Lyapunov (Ginter [ 9;p. 297]). So again by Maz'ja's

..........................................

....................'....'.....'............-..........-.-....'..'-..."-.-.--'.-.'.-.-.-".-'..':':b- )::'-?.'.:-:'.?.?:'i:'.::
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uniqueness theorem, v must vanish in D+ and so, by the

jump conditions we have

0 

0+0
W 0

But M*+KW*=O as well, hence w*=0 which is a contradiction

and the theorem is established.

.-
. . . . . . . . . . . . . . . . . . . . . . . . .

.°.
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2. The Optimization Problem

Let r0={pER 3I1pI=l} denote the surface of the unit

ball in R3and let C1 1 (U0 ) denote the space of continuously

differentiable functions whose first derivatives satisfy a

Lipschitz condition and which is equipped with the usual

H6lder norm 1-1ll, 1 (see e.g. [8]). We will assume that

we are given a family of surfaces which can be described

by CI'1 parameterizations:

(2.1) F(f) = {pR P3p=f(-)+p0, = pp0}

where f:0 -R3 is an element of C1II( 0) and pER2 x(-h,-e 0 ).

Let a and b be two positive constants and define the subset

F(a )b cc U(0 by

-1,12
ab 0 0• "-" (2.2) Fa~ = {f~cl'(r0) l fI Il,l~b, f( ) +sp0 E2×(-h,-c0)

and f( )Za, er0}
30

Definition 2.1: A surface S in R3 will be called admissible

provided S can be described by a parameterization fFab and

S is contained in the Maz'ja class (c.f. Theorem 1.1).

Note that since each admissible surface is completely

determined by the function f, we will henceforth simply

refer to "the surface f" although, when convenient, we will

use the notation P(f). Clearly, each admissible surface

describes a surface bounding a bounded region which contains

a ball of radius a/2 and center p0 in its interior.

.• . . .. . . . . . . . . . . . . . .... . . . .. ,.J ,. - .
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cf

0a

cB

Figure 2

We will, when necessary, denote the region in R2 x(-h,0)

exterior to an admissible surface f by Df and that interior

to the surface by Df.

Let Uad be a compact subset of admissible surfaces.

For example, since the imbedding C2 (0)- CI'I(F) is

compact, we may choose Uad to be the subset of admissible

functions in C2(0r . This particular choice leads to a

non-linear optimization problem over a closed convex set.

The convexity will be advantageous for subsequent numerical

considerations.

We now wish to consider a family of boundary value

problems of the type discussed in section 1 which may be

considered as indexed by Uad:

(a) Af(p) = 0, pEDf,

(b) + ko = 0 on y=0

(2.3) (C) Tn- = 0 on y=-h

(d) n- g on F(f)
(e) 7'P
C.e) - - ik 04 = o(o - ).

.. . . . . . .. ..- - - - - - - -

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .... ... ... . . . .... .:-.:"-:::-'-..::. -":: .:. : i::"-i ::::;'--:;-;:: ;': :: : ;:: - ' " '"t
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Note that, because we are considering a family of boundary

value problems, the data g in (2.3d) must be defined

throughout the domain formed by the union of all admissible

surfaces. This is indeed the case for heaving motion

where g=-n.y.

With this understanding, each choice of surface

fEUad gives rise, according to Theorem 1.1, to a potential

0=0(p;f), pEDf. The class of optimization problems that

we discuss below then have the form: Let J:C(F0)*-IR be

continuous and define a map J[.] :Uad'R by

(2.4) J[f]:=J( (.;f)), fUad

where

(2.5) ( ;f):=o(f( )p+p0 ;f), e 0  .

The optimization problem is then to find f0EUad such that

(2.6) J[f 0 ] J(f], for all fEUad

or

(2.7) J[f0] J[f], for all feUad

We will confine our discussion to the problem of minimization.

This is sufficiently general since the problem of maximizing

a functional J may always be replaced by that of minimizing

-J.

Specific forms of the functional J of (2.4) may be

chosen to reflect desirable design criteria. For example,
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as mentioned in the introduction one may choose J to

represent the added mass of the hull. In this case, the

problem of interest is that of minimizina the functional

J in order to reduce the hydrodynamic force on the ship

hull, a goal which is obviously of great importance to

ship design. Indeed, it is well known (see [26;pp. 563-567])

that the added mass of a particular hull may be represented by

M= Re a(p) '± d.

r(f)

This form, in light of the boundary condition (2.3d), leads

to the functional

(2.8) J[f] = Re f (;f)g(f()P+p0)jf()dr ,

where Jf is the Jacobian of the transformation p=f(P)p+p0.

As we will see below, this form indeed defines a continuous

functional on Uad.

Returning to the more general problem of minimizing

the functional (2.4), our first task is to show that the

functions (.;f) related to the family of boundary value

problems (2.3) via the equation (2.5) depend continuously

on the choice of surface f, i.e. that the mapping

f+(.;f) is continuous as a map from Uad into C( 0 ).

Recall that the solution of the boundary value problem (2.3)

is given in D (see also equation (1.10)) by
~f

(2.9) O(p) = y(pq)g(q)drq- f q y(p,q)u(q)dr

D(f) F(f) q
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where u is a solution of the integral equation (1.9) on

r(f). Thus P(p;f) =u(p;f) and we may write the

integral equation (1.9), suppressing the dependence of

on f as

(2.10) 4(P)+f T y(p,q)O(q)dq = y(p,q)g(q)dq

f) q~r(f)

Theorem 1.2 guarantees that this equation possesses one

and only one solution for each given fEUad and gcC(r(f)).

We now wish to use the integral equation (2.10) to

study the mapping f*(.;f) as a map from Uad into C(r0).

In particular we wish to show that this map is continuous

and, consequently, a functional J of the form given by the

relation (2.4) will assume its minimum value on Uad* To

this end, we consider the integral equation

(2.11) ,(f ( )+p0)+ [ 7 (f(P)P+p0,f(q)q+p0)]4 (f@() 4+p0)Jf()dF

0 q

ro Cf p Jf(q)dr 4

" 
0

obtained from the integral equation (2.10) by means of the

change of variables p=f(P)P+p0 " Note that, under our

hypotheses, the Jacobians, Jf, of the transformations, are

uniformly bounded on r0 with respect to fcUad since Uad is

a bounded set with respect to the C -norm. Indeed, writing

q=f(eq, q )+p 0 , 4=(sineq cOSq , sineq sinoq, cose q) then,

for any given fcUad , the Jacobian has the form
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(2.12) Jf(eq, q)=f(eq,q) [f(Oqq a ) 2sin 2 eq+(7T f(eQ, q)) 2

+(a f(eq )) 2 sin 2 eq]
qq q

Since each term of the second factor on the right is bounded

by 11f,1 2 and If( 1q,q< ' fil,1 we see that

(2.13) sup iJf(q)l I /'T fffjj 2 b 2/T

Introducing the functions ( ):=4(f(p)p+p 0 ),

gf(D)=g(f(P)p+p0 ) , afp)[-q Y(f(p)p+p0, f(q)q+P0 ) ]jf(q)

f an q

and b f (,)=[y(f( )P+p0;f(4)4+p0)]Jf(q), then equation (2.11)

assumes the convenient form

(2.14) (P)+f af(pq) (q)dr' = f bf( ,4)gf(4)dr .

0 0

Let B(C(r 0 )) denote the class of bounded linear operators

on C(F0) . We define two families of operators {AffU

and {BflffUad in B(C(F 0 )) by the relations

(2.15) Af(I)( ) = J af(Pa)I()dF, r 0

" F0

and

(2.16) Bf(M)(P) = f bf(P,4)f(4)dF4, C 0 .

'0

We will establish the continuity of the map f5+ by showing

that the kernels af and bf are weakly singular for all

fEU ad and that the operators Af and Bf depend continuously

on f i.e. that the maps fHoAf and f5Bf of Uad into B(C(F0))

7.-
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are continuous when B(C(r0)) is equipped with the uniform

operator topology. To this end, we will need two crucial

estimates which are given in the following:

Lemma 2.1: For any 6, 0<6< , the kernels af and bf are

weakly singular and satisfy the inequalities:

(2.17) laf(p,q)-ag I I if-gil c1

1,1 I- +26

and

(2.18) Ibf( ,)-b g(,i)l I I lf-gI 16 c 2

where c1 and c2 are positive constants. The proof is

quite technical and we relegate it to an appendix. An

estimate similar to (2.17) was used in [ 1 1. The present

estimates are used in the proof of the first part of the

next theorem.

Theorem 2.1: Let B(C(F0 )) denote the space of bounded

linear operators on C(r 0) equipped with the uniform

operator topology and assume that the map fDgf from
cl, 1

C (r0 ) into C(r0 ) is H61der continuous. Then the mappings

f+Af and f+Bf of Cl,(r0) into B(C( 0)) are H61der continuous.

Moreover, since the set Uad is compact, the map fN+(.;f)

of U into C(r0 ), where (.;f) is the unique solution of

the boundary integral equation (2.14), is H61der continuous.

Proof: Consider, first, the mapping f Bf. Using the

estimate (2.18) we have

. . . . .

.. .. .. .. .. .. ..

.. . . . . . . . . . . . .
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lBf(t) ()Bg ) (f)() b f Ib(j,))-b g(,)j l(4)jdF
1 0

S110JIf-g111,1 c2f dr

This establishes the H61der continuity of fH-Bf. It then

follows from the assumed continuity of the map f5gf that

the map fIGf from Uad into C(r0 ), where Gf is defined by

(2.19) Gf(p):=Bf(gf) (P) = f bf(P, )gf ()dr ,

0

is continuous. We may now rewrite the integral equation

(2.14), using the definition (2.19), as

(2.20) a()+f af(P,4) (q)dr - Gf(p), Pc 0 0

1"0

This equation is of exactly the same form as that treated

in Theorem 2.2 of [ 1]. The remainder of the proof

follows, almost verbatim, the proof in ( 1 ] and we do not

repeat the arguments here.

The continuity of the mappings f (-;f) and f5Gf

lead immediately to the following corollary which establishes

the existence of solutions of our optimization problem.

Corollary 2.1: Under the hypotheses of Theorem 2.1, the

functional J[I defined by the equation (2.8) is continuous

as a map from Uad into I and consequently takes on its

absolute minimum on the set Uad

There is, of course, no guarantee that the solution

of our minimization problem is unique. We can, however,

. . . . . .. . . . . .. . . . . .
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formulate a continuous dependence result for the solution

set of the minimization problem. To this end, we consider

the functional as a continuous map on the product space

c(r0)xc(r 0). For example, we may think of the added mass

functional defined in equation (2.8) as a functional

depending on the given data g as well as on f.

For a given functional J(f,g) we set

(2.21) ig = inf{J(f,g)IfEu ad}

and define the set-valued mapping

(2.22) D(g) = {fEUadliJ(f,g)=ig .

Note that, by Theorem 1.2, for all g C(T0), U(g)#O. In fact,

if gEVCC(r0 ), V closed, then the graph of this set-valued

mapping is closed, as is shown in the following theorem.

Theorem 2.2: Let VcC(F 0 ) be closed and J:UadxV-R be

continuous. Then

(a) the real-valued function g'+i is a continuous
g

map from V into R, and

(b) the set-valued function 4, defined by the

relation (2.21), has a closed graph.

Proof: Suppose that {g n} and {fn } are sequences in V and

Uad respectively such that gn-g in C(r0 ) and f in

C'I(r0) and f Cj(g Since U is compact V is closed,0' n n ad

f4EUad, and (D(g) is defined. We wish to show, first, that

i -i,and second, that fE(g).
n
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Now, let f0 EP(g). Then, the continuity of J implies

that i gn .J(f,g). Moreover, by definition of gI

J(f0gn)2>i for all n. Again by continuity of J,
-n gn

9 Hence iJ(fg)=lim ± im J(f0 ,gn)=i .

Therefore J(f,g)i =lim i and fcE(g).
g n-* gn

Corollary 2.2: The optimal solutions of the minimization

problem for the functional (2.8) depend continuously on

the boundary data g in the sense of Theorem 2.2.
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3. Optimality Conditions

We turn now to the question of finding necessary

conditions for the constrained optimization problem.

Specifically, we will treat the problem of minimizing the

functional (2.8) representing added mass, under the additional

assumption that the subset of admissible surfaces, Uad' is

convex as well as compact. Such an additional requirement

is not overly restrictive since, as we remarked in section 2,

1,1the class of all admissible surfaces is convex in C (F0)

If, as suggested there, we take Uad to be the class of all

admissible C 2-surfaces, Uad will be convex.

As is well known, the basic necessary condition in

this context takes the form of a variational inequality.

For convenience, we recall here some basic definitions.

Definition 3.1: Let X be a vector space, Y a normal linear

space and A a mapping defined on a subset DcX with range

in Y. Let xOD and eX. If the limit

(3.1) A'(x 0 ;f) = lim ![A(x0+E)-A(x
" E ) E

exists, then A is said to have a Gateaux differential

A'(x 0 ;f) at x0 in the direction . If A'(x 0 ;f) exists for

all OX, then A is said to be Gateaux differentiable at x0.

If A'(x 0 ;o) exists for all OEX and if the map O'-A'(x 0 ;0)

is linear and continuous then this map is called the Gateaux

derivative of A at the point x0 . In this case we will

denote this map by A'(x 0 ). Thus A'(x 0 ) is a linear

. -- ................ . ......
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continuous map from X to Y.

Remark: We note that it makes sense to consider the limit

(3.1) only if x0 +ESCD for all E sufficiently small.

The basic theorem, stated here in a form slightly weaker

than usual (compare e.g. [4, p.119]) is the following:

Theorem 3.1: Suppose X is a vector space, KcX is a convex

subset, and A:K-E. If x0 K is such that A(x 0 ) -<A(x) for all

xEK and if A' (x0 ;x-x 0 ) exists for all xcK then

(3.2) A'(x 0 ;x-x0 ) - 0 for all xEK

Proof: Since x minimizes A on K and since K is convex,
0

X0 +E(X-X 0 )EK for all EE[0,1] and all xeK and

A(x 0 +E(x-x 0 )) A(x 0 )

Hence

A(x 0 +E(X-X 0 ))-A(x 0 )
~> 0

E

for all EE(0,i] and all xeK. Since, by hypothesis,

A' (x0 ;x-x 0 ) exists for all xEK,

SA(x 0 +(X-X 0 ) - A ( x 0 )
(3.3) A'(x 0 ;x-x0) = lim >E 0

Remark: The slight difference in the form of the statement

of Theorem 3.1 from that usually found in the literature

(e.g. [4] loc.cit.) lies in our assumption that A'(x 0 ;h)

exists only for those h=(x-x0 ), xEK. This is crucial for

our considerations since the functional we treat is only

defined on a convex set (CI'I(F) functions representing
0
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surfaces in the Maz'ja class) and cannot be interpreted

outside of this convex set. Thus it is impossible for us

to consider arbitrary cl'l-perturbations of the form x0+eh.

The inequality (3.2) is the basic variational inequality

which expresses a necessary condition for the problem of

minimizing A over K. We remark that, if A is convex, then

the condition (3.2) is also sufficient for a (unique)

minimum. We will not consider this question in what follows.

The application of this result to our concrete situation

(x=C' (F0 ),K=Ud) will be possible provided we can show that the

limit in (3.3) exists for the functional J defined in

(2.8). If, indeed, this limit exists for all flUad

i.e. if, for every flEUad ,

J[f 1 +E(f-fl) ]-J f1]
"" E

exists for all feUad' then solutions of the corresponding

variational inequality will be candidates for optimal

solutions. Notice that, in light of the existence theorem

of section 2, there is no question concerning the existence

of at least one solution of the variational inequality

(3.4) J' [fl;f-fl] : 0, for all fEUad ,

since this inequality will necessarily be satisfied at any

optimal solution in Uad* What is needed here is, first,

the calculation of J'[fl;f-fl] and, second, the description

of an appropriate approximation scheme for the solution of

the resulting variational inequality (3.4).

With regard to the differentiability of J we remark

-........................
. . . . . . . . . . . . . .
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that a number of authors, see e.g. (10], [3], [9], [24],

and [4] have discussed similar questions with regard to

what are generally referred to as "domain functions".

Many such discussions (see e.g. [9], [14]) consider two

dimensional problems and rely heavily on conformal mapping

arguments. Here, we return to Hadamard's technique (see [3])

to establish the form of J'. This derivation depends on a

technical lemma which we state below and whose proof, which

is somewhat involved, we will relegate an appendix. Recall

that the functional J depends on the surface f through the

solution of the boundary value problem (2.3). Actually

we consider a special class of boundary value problems,

namely those for which the given values of the normal

derivative on r are in fact the values of the normal

derivative of a potential function which is defined throughout

E2x[h,0]. That is, the boundary condition (l.ld) is

replaced by

u= -- on r

where V u=O in R x(-h,O). Of course u will not satisfy the

boundary and radiation conditions appropriate to the problem.

In this sense i plays the role of the incident field in

scattering problems. In this vein we define

uTUT  U+U

which behaves as a total field and satisfies the condition

T
(3.,) 1 - 0 on rDn

.-' Q
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Lemma 3.1: Let u be harmonic and let u1 and u2 be solutions

of the boundary value problem (2.3) corresponding to the

admissible surfaces F=1(f I) and P2=F(f 2 ) with D- and D
+

denoting the interior and exterior respectively of F,

i=1,2. Let uT=ui+u, i=1,2. If we define AJ by

(3.6) AJ := uI . dF I - u2 . dr

F1  F2

then

A D d-r + Vu -ru dV- u -Vu Tdv7- 'TJ
S2  rT1 D 1 \(D InD 2 ) D 1 \(D 1 nD 2 )

or

(3.7) AJ = [l1 2+(Vu2VU)]dV- [Vu 2+(Vu .Vu )]dV.
D \(D nD) D \(D nD)

The proof of this lemma is given in Appendix B.

We may now use this form for AJ in order to compute

J' [fl;f-fl] for f,fl'Uad .

Theorem 3.2: Let f EUad and consider the functional

(3.8) J[f] = Re f (p;f)g(p)dF p f[Uad

F (f)

where (P,f) is a solution of the boundary integral equation

(1.9) appropriate to the boundary F(f). Then, for all fEUad ,

the Gateaux differential J'(fl;f-fl) exists and has the form

(3.9) J'(fl;f-f1 ) = Ref (f(O)-f()) (fl) [Vu(f( ) +p0 )]2

+ (xvuT(f () P+p0 )] 2 }d .

Proof: For ease of notation we write v=f-f I and let

F =F(f +EV), 05l. Then
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(3.10) -[J(f +EV)-J(fl)] 1Re [17u12+(7uT'VU-) dE 1 ]dV

f [1Ivu2+(VuTvUT) dV

1" E

Di\ (D[nD)

= 1 Re[i Ii 2 ]

Consider the first of the integrals in (3.10). Then,

iterating the integral we may write, using spherical

coordinates,

(3.11) :f I7uI2+(Vu'VuT)dv

D \ (D1 nD )

[I Vu12+ (VuT.Vu') ]r dr dc
A! I RO0!

= Aj(e,¢) -

where A1 is a measurable subset of r0 , R(6,0) is an

interval of r-values and da=sinddO.

D \(D nD)

Figure 3

Using the mean value theorem equation (3.11) becomes

.-- .*b* -*. .* .. . .

"' ' .. -,-.-...V '" -.- ,-.< '''''- ",< ".'y ." ', .'.'- '.•.' " - ," ." '-" - '".-"." - ." " - -. ." • . ""- - " ".
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[-u 2 +(u.uT)] r2drd2+(VuT.VuT)Afl(6, 0) I e )+ ce eud

A1  r=fl+Xh

where 0-<X:Ev. Similarly, we arrive at the same expression

for 12 recognizing, in that case, that fl(e,)+Ev(O,)-5fl(e,,).

Note that AI uA2=rt that X=O(E) and that, according to

Theorem 2.1, the solutions of the integral equations depend

continuously in the C 1,1 norm on the functions f. Hence,
decomposing VuT and VuT into normal and tangential

-.1  vu

directions and recalling that 7 = 0, we have

"[J(f 1+Ev)-J(fl)] = Ref v(f 1 +Ev) 2[(VU) 2+VuT.VuT] dr0

.F0 ir=fl+Xv

"e 2 vf2[(Vu) +(nxvu ) ]dr 0 , as E-0

Rf v 1[V) -' TF~0

which completes the proof.

Note that the differential is linear and continuous

with respect to v=f-f I and that the variational inequality

takes the concrete form

(3.12) Re (f()-fl( ))[f ()] 2 {[Va(f( ) +p) ]2

i.F02}dr 0

+ [nxVuT (f ( ) +p0 )] - 0p

Having the explicit form of the Gateaux differential

we may indicate here, very briefly, the questions which

must be addressed in introducing a concrete numerical

procedure for the approximation of solutions of the

. - . . . . .
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variational inequality (3.12). Systematic discussions of

the general problem may be found, e.g., in the book of

Cea [4] or in the review paper of Oden and Kikuchi [211.

We repeat that here there is no question of the existence

of a solution of (3.12) in light of Theorem 2.1. To find

an approximate solution of (3.12), let {Sh}0<h<1 be a

dense sequence of finite dimensional subspacesof cl(r 0)
hU

and let Uad=U ad'Sh Here as usual, h denotes an

appropriate index, normally the mesh parameter. The

sequence {Uad}0<h< 1 is a family of subsets of CI'I(0

approximating in some sense the constraint set Uad* The

approximation of (3.12) will then involve seeking a

function Uh such that• funti~nfihE ad

h
(3.13) ' [flh;flh-fh] 2 0, for all fhCU ad

Note that, since U is compact, U nS is a compact

ad ad' h

subset of a finite dimensional space. Again we may appeal

to continuity of J on Uad and hence of the restriction of

J to U adnS to establish the existence of solutions ofadh

these approximating inequalities.
Since Uh is a subset of the finite-dimensional space

ad

Sh, one may express flh and fh in the form

N N
(3.14) f = E ctioi., f h Ii~)lh i=l i=l

if {i}N denotes the collection of basis functions

spanning Sh, where ai and Bi are components of f1 and f
wt 1

. with respect to the basis functions, respectively. By

%"
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substituting (3.14) into (3.13), and using the linearity

of J'(f;v) in v, we then reduce the variational inequality

problem to an optimization problem in 0: Find {ai},EK
1 h

such that

N N
(3.15) E (a i-i)J'( j E jZj)'oi a 0, for all {8i}EKh

i=l jl

where

NK h:=[{ i}ERNlf h= Z a i~i"UadCS h•
i=l

Then several standard algorithms in use in the theory of

constrained optimization problems may be directly

applicable to our study. Four major methods of this type

are available. These are the classical method of

successive approximations (or fixed point methods),

pointwise relaxation methods, penalty methods and Lagrange

multiplier methods. However, it is understood that the

success of any of the aforementioned schemes, and the

questions of convergence of the solutions of the

optimization problems(3.15) to a solution of the variational

inequality (3.12) will depend heavily on detailed analysis

of how the approximate constraint sets Kh, and the subspace

Sh are chosen, as well as on establishing Ggrding-type

estimates for the operator J'. We shall pursue these

questions in a separate communication.
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APPENDIX A:

In Lemma 2.1 we introduced estimates in order to prove

that the operators Af and Bf, defined by equations (2.14)

and (2.15), are continuous on C(UO) and that the mappings

fH+Af and fF+Bf from Uad into B(c(r 0)) are continuous. Here,

we outline the calculations needed to establish those

estimates.

We begin by remarking that, since the set Uad is

bounded in the Cl'l-norm, the elements of Uad satisfy a

uniform Lipschitz condition. Hence, writing Pf=f(P)P+P0

and qf=f(q)q+po, where we affix the suffix on pf and qf to

accentuate the dependence on f,

(Al) Ipf-qfl _ I MI- [

where M is independent of f (recall that jf( ) I~b for EPO).

Moreover, we can obtain a lower estimate on IP-41 as

follows if we recall that for all fEUad' f(P)a pointwise

on

: I~~~~~Pf-qfl ->2[()Pql-(~)fP)~

• ->~~ J f( ) I 1)- I- If(@)-f( ) i f

from which we obtain

• .. (A2) Jpf-qfj+jf(4)-f(P)j a _> f(p)JJP[-41

But since f( )=f(P)I, we have

If@-f()I 1If@4)I-If(W)1 jjqIf pO!Ipf-pQj j Ipf-qfI

.. .-... .... "' "
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which, when combined with (A2) and the pointwise lower

bound on f, yields

(A3) 2 Ipf-qfl

Turning now to an estimate for the kernels aft we

recall (see the relation (1.4)) that the normal derivative

of y can be written in the form

a n(qf)•(pf-qf)
(A) Uq (Y(pf,qf)] - - + Q(pf,qf)nq 27rI Pf-qf I3

where Q is bounded. The unit normal to the surface has

the form

n(q) = H(q)/Jf(Oq,q)

where (0q, q) are the spherical angles associated with the

point qEF(f) and fi(q) is the normal vector to the surface

P(f) whose components are computed in the usual way from

the parametric equations for the surface in spherical

coordinates. Explicitly, if q=f(e , q )4+p and

4=(sin0q cOSO , sineq sin4q, cosO ) then

f(q= x q- -f - sine -f f2sineq ;0 ; q q- --q q q q

where

q q and q = (1/sine q) P

and
J[ff2 sin 2 e+(f 2 f 2 2

f (qq) q+(=f ) +(g- ) sinq
q q

.................................
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Since the surface is described by a function fEC Ul(I ") ,

the usual Lyapunov-type estimates yield

(A5) In(qf)(pf-qf) n _ acpf-qfl 2

hence, with (A4),

1- y(pfqf) I c + IQ(Pf,qf)
q

With the inequality (A3) and the boundedness of Q, this

last estimate becomes

Itq Y(pf,qf) P C

and, since the Jacobian Jf () is also bounded (see the

estimate (2.13)), we have

c 0olaf(p~q) ! = in -y Y(pf,qf)f) <

q

Thus the kernels af are weakly singular.

It is much easier to see that the kernels bf are

weakly singular and we omit the simple estimates.

In order to establish the first estimate (2.17) of

Lemma 2.1 we use the following estimate from [1 ;p. 52]:

i ~ (6) Inf(qf) (qf-pf)-ng(qg)(qg-p )I-<6Ip-qI2(l1-)IlfgI l1

where nf(qf) is the unit normal to the surface F(f) at the point

qfEr(f) and n (qg) is similarly defined on the surface

r (g).

Now, using (Al), (A3), (A5), and (A6) we have

S...* '.
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nf (qf)•(qf-pf) n (q )•(q -p
lqf-pfl g-pgg g

Snf (qf)•(qf-pf)-ng (q )•(q -p
lqf-pf3 n(q) (q-p)

lqf-Pf I q 9-Pg 13

< -126 f-g 1 l+Cg_

[tk gpg 13- Iqf-pf -36 Iqg-P 13_I qf-pf, 3]6

or, since both Iq -P 9 and lqf-Pfl satisfy (Al),

(A) A~I-I1-261 ifgl ja 4-1p4331qg 13_ 6q-f

The last factor in the second term may be estimated as

follows where we write Af=qf-pf=f(4)4-f(p) , and similarly

for g:

SA-B

Then

(A8) A < jAg-Afl _ IgS )-f( 2)Ig()-f( ) _ 2 If-gi ll,1

while each term in B is of the form p

and so B<3cI - .

Combining this last result with (A7) then yields

- 6q

._ .. Cl - l l 2 + 2 .l+ .lf g l

°" " '' W * ** * * . . . . . . . *. .*.. . . . .
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which establishes the estimate (2.17).

In order to establish the last estimate (2.18) we

write

(A9) ibf(Dq)-bg(PF) I = IY(Pf qf) Jfq)-(Pgqg)Jg q) I

:_ IY(pf,qf)-y(pgoqg) I IJf(q) +IY(pgiqg) I IJf(q)-Jg(4)1.

Since, according to the estimate (2.13), the Jacobian is

bounded we may estimate the first term on the right hand

side of the inequality (A9), by

q1 1

since R is bounded. Then

ie-q I I-Ipf-qfll lip -qgl-Ipf-qfll [Ipg-qglI-pf-qfl]I
BI< IPf-qfji IPg -qg g * a2 Ij_1 2

26M 1
5 M 1+6 [Ig(q)-f(q)1+g(P)-f(P) Ip-6f
a

or, as in (AS)

(AlO) B1  ! 1- 1 l lf-gi I1 •

For the second term on the right of (A9) we have the

inequalities

B2:=IY(pgfqg)11Jf@q)-Jg4)1 !5 1 lJf(4)-Jg@ ) •

Examining the second factor and using the explicit form for

the Jacobian given in (2.12), we have

. .
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2~~g f-i[sn2  2 2 22 2 22 2
I f-1 91 ! If91( si -6+g+fsin 6 +fIf1s[fs ineff sn]

2 2 2~ ~ 2 2+~sn
Efg sin e+f +f]sn[e

l~Jf-gJ I1l,l+2 (f 2sin 2e+f2+f2 sin 2el l+[g 2 sin 2 e+g 2+g2sin2 el'1
Se 8

< lIIf-gIIll+ 2 {(fIfIgI Iin + If I+tg I

+ e esr~

'If 2+Ig 0I) IfIfgIi 7
* + If+gM

:5 (p +3p )Ilf-gjJ11,

c4 11 6Hence B 2 :5(fgI' and this, combined with the

estimate (AlO), yields

(All) Ib f (p~)-b (M~ c 3 + + c 4 fif-gj K

from which Equation (2.18) follows.
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APPENDIX B:

This appendix is devoted to the proof of Lemma 3.1.

IThe functional J(F)= u - dr where u is the solution of

the boundary value problem (2.3) corresponding to the

particular surface is often referred to as a domain

functional. As we recorded in the introduction, the

consideration of optimization problems involving such

functionals goes back to Hadamard [11]. Other references

have been cited in the introduction. Here we return to

the strategy of Hadamard in order to establish our result.

Proof of Lemma 3.1:

We begin by recalling some notation: u is an harmonic

function in 12x(-h,0) while, for i=1,2, . is a bounded

surface of class CI 'I and u. is the corresponding solution

of the boundary value problem (2.3), i.e.,

(Bl) Au. =0 in D+

U.1
(B2) --n- + kui = 0 on y=0

(B3) D = 0 on y=-h

(B4) = -a on Fi

and

(B5) Tr iku 0(r - )

30i

We divide our discussion into two cases:
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"* Case I: 1 lies entirely inside r 2 .

Cf

C D12

*: CB

Figure 4

In this case, we denote the shell determined by r1 and

1'2 by DI2. Notice that, initially, u2 is defined only on

and exterior to r However, we may extend u2 inside r2

as a C1 function although this extended function will not,

in general, satisfy Laplace's equation interior to r2.

For details, the reader is referred to Theorem 16.IV of

Miranda (101. We will assume, throughout the remainder

of this proof, that all functions are so extended, in

accordance with Miranda's method, as to make the expressions

which we will encounter meaningful. Writing u1=ui+u,

i=1,2, and recognizing that 3uT/an=0 on r1 and that Aul=0

exterior to r1 and, in particular in D1 2, we have, with

the divergence theorem,

auT
VuT.Vu dV =f V.(ulVu2)dV = T u dr

r Pf u2  2u j ~ 2 n
12 12  2  2

u[ u dr+ u 2  a dr+ u -n -d+ u 2  1

1 F2  r 2  r2  r2

..................................
. . . . . . . . . . . . *.. . . . . . . . . . . . . * ,. . * . . . . . . . . .



40

Using the boundary condition (B4),

3 u2  rau r aul
(B6) VuTVuTdV = u - dF-I u dr+ u -- l + uf 1 2 ua7n j2 an f an f 2 an

DI2 F2  F2  F2

But

(Aau 1  .~3u

(B7) (u - u - (u u -dF= o
fJ a -1 an)dn 1 anF2  1

since u and u1 are both harmonic in D12. (Note carefully
that we always take the normal to Fi as the exterior normal.

This accounts for the choice of signs in (B7).) We may

now use (B7) to replace the third integral on the right hand

side of (B6). Hence

T. T ( au a 2(B8) Vuu-Vu dV = T^ dF- u 2  - dF

D12 F2  F2

au au1u d1+ u I dr-F uI a dr+ u2  dr

F2  F 1  F2

But

au. au au=u 
1*i an aUl -u u2

au on Fi, i=1,2, and (u 2  1- u1 -)dF = 0
F 2

Indeed this last relation follows since both u1 and u2 are

harmonic outside F2 and we have, therefore,

- Ul au 2  l Ul au 2
. (u2 n - u1 an- ) d  - - (u2 an 1 - -)dCf
F2  Cf

au 1  a u 2
+ lim u - uI  n-)ds

a DR

--L.-*.. . . .



" .: -- - .' ''- . n .. .,n • " . ... , . . . . . . . .. ... -

41

where aDR is the surface of the cylinder DR of radius R.

Noting that u1 and u2 satisfy the free surface condition

(B2), the integral over the free surface is simply

u (u 2  1- u I au)dCf = [u2 (-kul)-ul(-ku2 )]dCf = 0

Cf Cf

Moreover, the radiation condition insures that the second

term on the right is zero. For detailed calculations, see

Kleinman [15;pp. 7-9]. Therefore the relation (B8)

reduces to

T 2 au f3a
(B9) Vu 1Vu 2dV= u dr-  u2  = dr+ u f7

D12 F1  F2  F2  F1

or, rearranging terms,

au o1 au 2f U.u V1
(BlO) AJ f u1  - f u2 7 = f 1 2ud u dV

r r D 2 DI
12 12 12

This is exactly the conclusion of Lemma 3.1 for Case I

since, in this case, D2 \(D flD2)=DI2 and D1\(DIfD 2 )=O.

Case II: The surfaces F1 and F2 intersect.

C f

r 0

%-%

CB

Figure 5
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Here, we use the device of Hadamard to extend the result

of Case I (see e.g. Bergman and Schiffer [ 3]). Thus, we

introduce an auxiliary surface F0 containing both F1 and F2

in its interior and apply the results of the previous case.

With self-explanatory notations, we may write

(ll) J 1 au u f9UafBI uI  a r fVTV-d+fo-n- dF- ua 7 n d1 =.VadV u - d- u T- dF

F1  Fa Dla Fa F1

and fB1 ~U n2du a~ d1 u ud
(BI2) u2  - dF- Ua - dF = Vu.u~dV+ u "- dr- u dF

F2  ra D2a Fa F2

Subtracting equation (B12) from (Bll) we obtain

(B13) f uI  n 1dr+ u2  -dr = Tvu.VuTdv- VUTVUadV
r F2  Dla D2 a

a u au
uIdr- u dl'

F2

Notice that the right hand side is apparently dependent on

the surface Fa and the solution ua while the left hand side

is not. To see that this dependence is illusory, we

examine the first two integral terms on the right hand side

of (B13). By appropriate addition and subtraction we have

I 5 . . . . . . . . . . . .. . . . . . . . . . . .

S. S. ..S -
S. . . . . . . . . . . . .
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(B14) fVu .Vu dv-f Vu '7u dV = f(u-u)dV+f Vu.ud]
Dla D2 a la Da.

2 a D1 a
- (Vu) (VUa-dV+ ) d V

2a Dla

=fVuT. (VUTVuT)dV-f VuT* (VUT-VuT)dV

+ T T

D 2 \(D 1 nD2) D 1\(D 1 nD2)

But

f VuT.(VuTVuT)dv-f VuT*(VUa-VuT)dV

Dla 2a

(U uT 
DuT

= (Ua-U2 ) 1 dr- (uau I)2 dr

r
a a

3uT au T D
since 1 0 on r and 2 = 0 on r Also a = 0 on r

3 0 1 = *T- a

and thus, after rearranging terms, the relation (B14) becomes

(B15) rvuT.vuT dV-f VuT.VUT dV
1 a 2 a

DlaD2
uT auT auT

= (UU ) (U l - u) -a + u T u2  T 1 d

a

+ VuI • Vu 2dV-f u •VU .dV

D lDD) T D \(D flD-) V
2 1 2 1 1 2

Now, writing uT=ui+u, i=a,1,2, we have

•.. ... .... ... ..............................................................................S. .. *.-...-... *.. ................... *.............................. . . . . .• . ......
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a T 2u T au T
(B16) T a (u-u (u-u 2 )-- + U 2 1-U2 )

a I

... . - 2U-2  - 2 +n a an - 2  .

au T a
ua Tu 2 uT3Uld

An argument completely analogous to that given above in

Case I allows us to conclude that

a -n(u-U2)-(Ul-u2) 1 dr = 0

a

and so, as can be easily checked by writing out all terms,

the right hand side of (B16) reduces to

( u 2 _ 1
1(uI  - -u 2  n -

a

again because uI and u2 both satisfy the free surface and

radiation conditions.

Combining this last result with equation (B13) and

(B15) we have

1  2 Ul. T(B17) J u1 T-d u 2 7- d = f Vu .Vu dV

r1 r 2  D 2\(DnD2)

_LU Vu TdV+ - a dr- I - dr
D \(D lD 2 ) r2

which is the desired result.

...-. . *...

. ..-° . .. . .
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